Лекция 13. Трансферное обучение: адаптация предметной области
11.1. Введение
Адаптация предметной области - это форма трансферного обучения, при которой задача остается той же, но существует сдвиг предметной области или изменение распределения между источником и целью. В качестве примера рассмотрим модель, которая научилась классифицировать отзывы об электронных продуктах по положительным и отрицательным настроениям и используется для классификации отзывов о гостиничных номерах или фильмах. Задачей анализа настроений остается то же самое, но изменился домен (электроника и гостиничные номера). Применение модели к отдельному домену создает множество проблем из-за различий между обучающими данными и невидимыми данными тестирования, обычно известного как сдвиг домена. Например, предложения, содержащие такие фразы, как «громко и четко», будут в основном считаться положительными в отношении электроники, тогда как в отзывах о гостиничных номерах - отрицательным.
Точно так же использование таких ключевых слов, как «длинный» или «скучный», которые могут преобладать в таких областях, как обзоры книг, может полностью отсутствовать в таких областях, как обзоры кухонного оборудования.
Как обсуждалось в предыдущей главе, центральная идея адаптации предметной области состоит в том, чтобы учиться на исходном наборе данных (помеченном и немаркированном), чтобы обучение можно было использовать в целевом наборе данных с другим отображением предметной области. Чтобы изучить сдвиг предметной области между источником и целью, используются традиционные методы, которые делятся на две широкие категории: основанные на экземплярах и основанные на функциях. При использовании экземпляров несоответствие между исходным и целевым доменами сокращается за счет повторного взвешивания исходных выборок и изучения моделей из повторно взвешенных [BM10]. В функционально-ориентированной системе изучается общее разделяемое пространство или совместное представление между источником и целевым объектом, где распределения совпадают [GGS13]. В последнее время архитектуры глубокого обучения были успешно реализованы для адаптации предметной области в различных приложениях, особенно в области компьютерного зрения [Csu17]. В этой главе мы подробно обсуждаем некоторые методы, использующие глубокое обучение для адаптации предметной области, и их применение в тексте и речи. Затем мы обсудим методы обучения с нулевым, однократным и малым выстрелом, которые приобрели популярность в области адаптации. Мы проводим подробное тематическое исследование, используя множество техник, обсуждаемых в главе, чтобы в конце познакомить читателей с практическими аспектами адаптации предметной области.
В этой главе мы будем использовать обозначения, аналогичные обозначениям исследовательских работ, которые они цитируют, для упрощения сопоставления со ссылками.
11.1.1. Методы
В этом разделе мы выделим некоторые из хорошо известных методов, которые могут быть очень эффективными и достаточно универсальными для решения проблемы адаптации предметной области в тексте и речи.
11.1.1.1. Составные автоэнкодеры
Одна из самых ранних работ по адаптации домена принадлежит Glorot et al. в области классификации настроений [GBB11b]. Исходный домен содержит большое количество отзывов об Amazon, в то время как целевой - это совершенно другие продукты с небольшими помеченными данными. В этой работе исследователи используют составные шумоподавляющие автокодеры (SDA) для исходных и целевых данных, объединенных для изучения функций, как показано на рис. 11.1, в качестве первого шага. Затем линейная SVM обучается функциям, извлеченным кодирующей частью автокодера, и используется для прогнозирования невидимых целевых данных в различных доменах. Исследователи сообщают о новейших результатах классификации настроений в разных областях.
Варианты, такие как составные маргинальные автоэнкодеры с шумоподавлением (mSDA), которые имеют лучшие оптимальные решения и более быстрое время обучения, также очень успешно используются в задачах классификации, таких как классификация настроений [Che + 12]. Чтобы объяснить метод, предположим, что для источника S и цели T у нас есть выборка исходных данных DS = {x1, ···, xnS} ∈ Rd и метки Ls = {y1, ···, ynS} и цель данные выборки DT = {xns+1, ..., xn} ∈ Rd и без меток. Цель состоит в том, чтобы изучить классификатор h ∈ H с помеченными исходными обучающими данными DS для прогнозирования немаркированных целевых данных DT.
Основным строительным блоком в этой работе является однослойный автоэнкодер с шумоподавлением.
Входом для этого является весь набор исходных и целевых данных, т. е. D = DS ∪ DT = {x1, ···, xn}, и он искажается удалением признака с вероятностью p ≥ 0. Например, если представление вектора представляет собой вектор мешка слов, некоторые значения могут быть перевернуты с 1 на 0. Рассмотрим x˜i как искаженную версию xi.
Вместо использования двухуровневого кодера-декодера используется одно отображение W: Rd → Rd, которое минимизирует возведенные в квадрат потери восстановления, определяемые следующим образом:
1/2n∑ni=1 ||xi - Wx˜i ||                                                                   (11.1)
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Рис. 11.1: Составные автокодеры шумоподавления для обучения функциям и SVM в качестве классификатора
Если мы повторим это m раз, дисперсия уменьшится, и решение для W может быть получено из:
Lsquared (W) = 1 / 2mn∑mj = 1∑ni = 1 ||xi −Wx˜i, j||                                        (11.2)
где x˜i, j представляет собой j-ю испорченную версию исходного входа xi.
В матричной записи с входами X = [x1, ···, xn] ∈ Rd × n и его m-кратным повторением X¯ и искаженным значением X˜. Уравнение потерь можно записать как:
Lsquared (W) = 1 / 2mn tr [(X¯ −WX˜)T(X¯ −WX˜)]                                 (11.3)
Решение этого в закрытом виде:
W = PQ−1 с Q = X˜ X˜T и P = X¯ X˜T                                                      (11.4)
В предельном случае m - → inf, W можно выразить через математические ожидания P и Q.
W = E [P] E [Q]-1                                                                                     (11,5)
Давайте рассмотрим E [Q], который является
E [Q] = ∑ni =1E [x˜ix˜iT]                                                                            (11.6)
Недиагональные элементы в матрице [x˜ix˜iT] не повреждены, если два признака α и β оба переживают искажение. Они имеет вероятность (1 - p)2. Для диагонали это верно с вероятностью 1− p. Если мы определим вектор q = [1− p, ···, 1− p, 1] ∈ Rd+1, где qα представляет вероятность того, что признак α выживет после повреждения, тогда матрица разброса исходного неповрежденного входа можно представить как S = XXT, а математическое ожидание матрицы Q можно записать как:
E [Q] α, β = Sα,βqαqβ, если α =/ β
        Sα,βqα, если α = β                                                                    (11.7)
Аналогичным образом математическое ожидание матрицы P может быть получено как E [P]α,β = Sα,βqβ.
Таким образом, с этими матрицами ожидания реконструктивное отображение W может быть вычислено в замкнутой форме без искажения единственного экземпляра xi и «маргинализации» шума. Затем, вместо одного слоя, исследование «складывает» слой один за другим, как в составных автокодировщиках. Выходные данные (t -1) -го слоя подаются в t-й уровень после функции сжатия, такой как tanh, для придания нелинейности и, таким образом, могут быть выражены как ht = tanh (Wtht-1). Обучение выполняется послойно, т.е. каждый уровень жадно изучает Wt (в замкнутой форме) и пытается восстановить предыдущий вывод ht−1. Для адаптации предметной области они используют входные данные и все скрытые слои, объединенные в качестве функций для обучения и прогнозирования классификатора SVM.
Некоторые из преимуществ mSDA по сравнению с другими:
1. Задача оптимизации является выпуклой и гарантирует оптимальное решение.
2. Оптимизация является неитеративной и закрытой.
3. Один проход через все данные обучения для вычисления ожиданий E[P] и E[Q] дает огромный прирост скорости обучения.

11.1.1.2. Глубокая интерполяция между источником и целью
Очень похоже на традиционное машинное обучение, исследование Chopra et al. использует источник и цель с разными доменами для смешивания в разных пропорциях для изучения промежуточных представлений [CBG13]. Эта работа известна как глубокое обучение для адаптации домена путем интерполяции между доменами (DLID). Исследователи используют сверточные слои с объединением и прогнозирующим методом разреженной декомпозиции для неконтролируемого изучения нелинейных функций. Метод прогнозирующей разреженной декомпозиции подобен моделям разреженного кодирования, но с быстрой и гладкой аппроксимацией [KRL10]. Помеченные данные передаются через одно и то же преобразование для получения функций, объединения их и использования классификатора, такого как логистическая регрессия, для получения совместной модели. Таким образом, модель бесконтрольно изучает полезные функции как от источника, так и от цели. Эти функции могут использоваться только для переноса домена на целевом объекте. На рис. 11.2a, b схематически показано, как работает этот процесс.
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Рис. 11.2: Метод DLID. (а) Обучение латентному представлению без учителя. Верхние кружки показывают промежуточный путь между источником и целью, где закрашенные кружки - промежуточные представления, а пустые кружки - представления источника / цели. (b) Неконтролируемые функции и метки с классификатором для модели обучения
Пусть S - исходный домен с выборками данных DS, T - целевой домен с DT в качестве выборок данных, а p ∈ [1,2, ..., P] - индекс по P наборам данных. Смешение между источником и целью выполняется таким образом, что при p = 1, DS = DT и с этого момента количество исходных выборок уменьшается, а количество целевых увеличивается в той же пропорции. Для каждого набора данных p ∈ [2, ..., P - 1], DS, количество выборок уменьшается, а DT постепенно увеличивается для следующего p. Каждый набор данных Dp в качестве входных данных для экстрактора нелинейных признаков FWp с весами Wp, обученными неконтролируемым образом, генерирует выходные данные Zip = FWp(Xi). После того, как это обучено неконтролируемым образом, любые помеченные обучающие данные проходят через этот путь представления DLID, извлекая функции FWp в качестве выходных данных, и объединение всех выходных данных формирует представление для этого входа как:
Zi = [FW1 (Xi) FW2 (Xi) ··· FWp (Xi)] = [Zi1Zi2 ··· Zip]              (11.8)
Это представление и метка Zi, Yi передаются классификатору или регрессору для задачи и используют стандартные функции потерь для оптимизации. Невидимые данные проходят тот же путь, и прогнозы классификатора используются для получения класса и вероятности.
11.1.1.3. Глубокая путаница в домене
Архитектура глубокого смешения доменов (DDC), показанная на рис. 11.3, предложена Tzeng et al. и является одной из популярных работ по адаптации домена на основе несоответствий [Tze + 14]. Исследователи вводят уровень адаптации предметной области и метод потери путаницы, чтобы изучить представление, которое является семантически значимым и обеспечивает основную инвариантность. Предлагается сиамская сверточная сетевая архитектура, основной целью которой является изучение представления, которое минимизирует расстояние распределения между исходным и целевым доменами. Представление может использоваться как объекты вместе с набором данных с меткой источника, чтобы минимизировать потерю классификации, и применяется непосредственно к немаркированным целевым данным. В этой работе задача минимизации расстояния распределения решается с использованием максимального среднего несоответствия (MMD), которое вычисляет расстояние в представлении φ (˙) как для источника, так и для цели как:
MMD (Xs, Xt) = ||1/| Xs | ∑xs∈Xsφ (xs) - 1/| Xt | ∑xt∈Xtφ (xt)|| (11.9)
Полученное из этого представление используется в функции потерь в качестве регуляризатора с гиперпараметром регуляризации λ, также действующим как количество путаницы между источником и целевым доменом:
L = LC (XL,y) + λ ∗ MMD (Xs, Xt)                                 (11.10)
где LC (XL,y) - это потеря классификации из помеченных данных XL,y - метка или основная истина, а MMD (Xs, Xt) - максимальное среднее расхождение (MMD) между исходным XS и целевым Xt. Гиперпараметр λ контролирует степень путаницы между исходным и целевым доменами. Исследователи используют стандартную сеть AlexNet и модифицируют ее, добавляя дополнительный слой узких мест более низкого измерения «fc Adaptive». Низкоразмерный слой действует как регуляризатор и предотвращает переоснащение исходного распределения. Обсуждаемые выше потери MMD добавляются поверх этого уровня, чтобы он изучал представление, полезное как для источника, так и для цели.
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Рис. 11.3: Сеть глубокого смешения доменов (DDCN) для адаптации домена
11.1.1.4. Сеть глубокой адаптации
Long et al. предложите сеть глубокой адаптации (DAN), как показано на рис. 11.4, которая представляет собой модифицированный AlexNet, где потеря несоответствия происходит на последних полностью подключенных уровнях [LW15]. Если нулевая гипотеза состоит в том, что выборки взяты из одного и того же распределения, а альтернативная гипотеза состоит в том, что они происходят из двух разных распределений, максимальное среднее расхождение (MMD) является одним из статистических подходов [Sej + 12]. Вариант MMD с несколькими ядрами (MK-MMD) измеряет расстояние в гильбертовом пространстве воспроизводящего ядра (RKHS) между средними вложенными слоями двух распределений (исходного и целевого) с характеристическим ядром k. Если Hk - воспроизводящее ядро ​​гильбертова пространства, наделенное характеристическим ядром k, среднее вложение распределения p в Hk - это единственный элемент μk(p), такой что Ex∼p f (x) = (f (x), μk (p))Hk. Квадрат расстояния для любого слоя l, ядра k между источником (S) и целью (T) определяется как:
d2k (DlS, DlT) = ||EDS [φ (xS)] - EDT [φ (xT)]||2Hk                 (11.11)
Характеристическое ядро, связанное с отображением признаков φ, k (xS, xT) = φ (xS), φ (xT), представляет собой комбинацию m положительных полуопределенных ядер {ku} с ограничениями на коэффициенты βu как предоставлено:
K = {k = ∑mu = 1βuku : ∑mu = 1βu = 1, βu ≥ 0}                      (11.12)
где полученное многоядерное k является характеристическим из-за ограничений на коэффициенты {βu}.
Модифицированный AlexNet имеет три уровня сверточной сети (conv1-conv3) в качестве общих переносимых слоев объектов, которые замораживаются после обучения в одном домене.
Следующие два слоя свертки (conv4-conv5) более специфичны, и, следовательно, выполняется точная настройка для изучения специфичных для предметной области функций. Последние полностью связанные слои (f c6 - f c8) очень специфичны и не подлежат передаче, поэтому они адаптируются с помощью MK-MMD. Если все параметры в сети заданы как Θ = {Wl, bl}ll = 1 для всех слоев l, эмпирический риск определяется как:
minΘ1/na∑nai = 1J (Θ (xai), yai)                                             (11.13)
где J - функция потерь кросс-энтропии, а Θ (xai) - условная вероятность присвоения точке данных xai метки yai. Добавляя регуляризатор многоуровневой адаптации на основе MK-MMD к вышеуказанному риску, мы получаем потерю, аналогичную потере DDC, которую можно выразить как:
minΘ1/na∑nai = 1J (Θ (xai), yai) + λ∑l2l = l1d2k (DlS, DlT)       (11.14)
где λ> 0 - постоянная регуляризации, а l1 = 6 и l2 = 8 для установки DAN.
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Рис. 11.4: Сеть глубокой адаптации (DAN) для адаптации домена
11.1.1.5. Представление, инвариантное к предметной области
Многие методы используют представление, инвариантное к предметной области, с использованием исходных и целевых данных как способ изучения общего представления, которое может помочь в адаптации предметной области.
Выравнивание корреляции (CORAL) - это метод выравнивания статистики второго порядка (ковариации) источника и цели с помощью линейного преобразования. Сан и Саенко расширяют структуру, чтобы изучить нелинейное преобразование, выравнивающее корреляции слоев, известное как Deep CORAL [SS16]. Deep CORAL расширяет AlexNet и вычисляет потерю статистики второго порядка на последнем уровне, т.е. полностью связанный слой перед выходом. Если DS = {xi}, x ∈ Rd - данные обучения исходного домена размером nS, а DT = {ui}, u ∈ Rd - немаркированные целевые данные размера nT, Di, jS указывает j-е измерение i-го исходных данных. Например, Di, jT указывает j-е измерение i-го целевого экземпляра данных, CS - это ковариационная матрица исходных признаков, а CT - это целевая ковариационная матрица, тогда потери CORAL измеряются как расстояние между ковариациями:
CORAL = 1 / 4d2 | CS - CT |2F                                        (11.15)
где | · |2F представляет квадрат нормы Фробениуса матрицы.
Ковариационные матрицы для источника и цели задаются следующим образом:
CS = 1 / (ns −1) (DSTDS - 1 / ns (1T DS) (1T DS))             (11.16)
CT = 1 / (nТ −1) DTT DT - 1 / nТ (1T DT) (1T DT))            (11.17)
где 1 - вектор-столбец. Совместное обучение, которое снижает потерю классификации lCLASS и потерю CORAL, дает:
l = lCLASS + ∑ti = 1λiCORAL                                                  (11.18)
где t - количество уровней, а λ используется для баланса между классификацией и адаптацией предметной области с целью изучения представления, общего между источником и целью (рис. 11.5).
Существуют и другие представления, не зависящие от предметной области, которые успешно используются в различных работах. Pan et al. использовать представление, инвариантное к предметной области, с помощью анализа компонентов передачи, который использует максимальные средние расхождения (MMD) и пытается уменьшить расстояние между двумя доменами в подпространстве [Pan + 11]. Зеллингер и др. предложить новую функцию расстояния - несоответствие центрального момента (CMD) - для согласования центральных моментов более высокого порядка распределений вероятностей [Zel + 17]. Они демонстрируют универсальность своих методов адаптации предметной области в задачах распознавания объектов и классификации настроений (рис. 11.5).
11.1.1.6. Путаница в предметной области и инвариантное представление
Исследование Tzeng et al. Недостаток путаницы в глубоком домене состоит в том, что ему нужны как большие помеченные данные в исходном домене, так и редко помеченные данные в целевом домене. Tzeng et al. в своей работе предлагают потерю путаницы в домене как для помеченных, так и для немаркированных данных, чтобы изучить инвариантное представление в разных доменах и задач [Tze + 15].
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Рис. 11.5: Глубокая сеть CORAL для адаптации домена 
Передача обучения между источником и доменом достигается за счет а) максимизации путаницы в предметной области путем создания предельных распределений между источником и целью как можно более похожими друг на друга; и б) перенос корреляции между классами, изученными на исходных примерах, в целевые примеры. Полностью помеченные исходные данные (xS, yS) и редко помеченные целевые данные (xT, yT) используются для создания классификатора θC, который работает с представлением признаков f (x; θrepr), параметризованным параметрами представления θrepr и имеет хорошую точность в классифицированных целевых образцах:
LC (x, y; θrepr, θC) = −∑k1 [y = k] log (pk)                           (11.19)
где p = softmax (θCT f (x; θrepr)).
Чтобы обеспечить выравнивание между классами в источнике и цели вместо наличия «жестких меток» для обучения, «мягкие метки» усредняются по softmax всех активаций помеченных исходных данных для конкретного класса. В функции softmax используется высокотемпературный параметр τ, так что связанные классы имеют аналогичные эффекты на вероятностную массу во время точной настройки. Потеря мягкой этикетки определяется по формуле:
Lsoft (xT, yT; θrepr, θC) = −∑ilyτi log (pi)                                 (11.20)
где pi = softmax (θCT f (xT; θrepr) / τ).
Уровень классификатора домена с параметрами θD используется для определения того, поступают ли данные из исходного или целевого домена. Лучший классификатор предметной области по представлению можно узнать, используя цель:
LD (xS, xT, θrepr; θD) = −∑d1 [yD = d] log (qd)           (11.21)
где q = softmax (θTD f (x; θrepr)).
Таким образом, для конкретного классификатора предметной области, θD, потеря, которая максимизирует путаницу, может рассматриваться как потеря кросс-энтропии между предсказанием предметной области и равномерным распределением по меткам и может быть записана как:
Lconfusion (xS, xT, θD; θrepr) = −∑d1/D log (qd)           (11.22)
Параметры θD и θrepr изучаются итеративно для следующих целей:
minθDLD (xS, xT, θrepr; θD)                                       (11.23)
minθreprLconfusion (xS, xT, θD; θrepr)                             (11.24)
Таким образом, совместная функция потерь может быть записана как:
L (xS, yS, xT, yT; θrepr, θC) = LC (xS, yS, xT, yT; θC, θrepr) + 
λLconfusion (xS, xT, θD; θrepr) + νLsoft (xT, yT; θrepr, θC)  (11.25)
где λ и ν - гиперпараметры, которые контролируют смешение доменов и влияние мягкой метки во время оптимизации.
11.1.1.7. Домен-состязательная нейронная сеть
Ганин и др. использовать интересную технику слоя «обратного градиента» для адаптации сдвига домена через нейронную сеть с противодействием домену (DANN) [Gan + 16b].
Этот процесс является общим для всех нейронных сетей и может быть легко обучен с помощью стандартных методов стохастического градиента. Они показывают самые современные результаты в различных областях компьютерного зрения и классификации настроений.
Пусть S = {(xi, yi)}ni = 1 ∼ (DS)n; T = {xi}Ni = n+1 ∼ (DXT)n быть исходными и целевыми данными, взятыми из DS и DT в качестве распределения; N = n + n - общее количество выборок. DXT - предельное распределение DT по входному пространству X, а
Y = 0,1, ..., L − 1 - множество меток. Сеть имеет три важных уровня: (a) слои генерации признаков, которые изучают особенности из входных данных с параметрами.
Скрытый слой Gf: X → RD, параметризованный парой матрица – вектор θf = (W, b):
Gf (x; θf) = σ (Wx + b)                                            (11.26)
(b) уровень предсказания метки Gy: RD → [0,1]
L параметризован парой матрица – вектор θy = (V, c):
Gy(Gf (x); θy) = softmax (Vx + c) (11.27)
и (c) уровень классификации домена Gd: RD → [0,1] представляет собой логистический регрессор, параметризованный векторно-скалярной парой θd = (u, z), которая предсказывает, из исходного или целевого домена взят пример. На рисунке 11.6 показано обучение на трех разных уровнях.
Потеря прогноза для (xi, yi) может быть записана как:
Liy (θf, θy) = Ly (Gy (Gf (xi; θf); θy), yi)                    (11.28)
Потеря домена (xi, di), где di - домен, может быть записана как:
Lid (θd, θf) = Ld (Gd (Gf (xi; θd); θf), di)                   (11.29)
Общие потери при обучении для одноуровневой сети можно записать как:
Ltotal (θf, θy, θd) = 1 / n∑ni=1Liy (θf, θy) –
λ (1 / n∑ni=1Lid (θf, θd) + 1 / n ∑Ni =n +1Lid (θf, θd))      (11.30)
Гиперпараметр λ определяет компромисс между потерями. Параметры получаются путем решения уравнений:
(θˆf, θˆy) = argmin (θf, θy) Ltotal (θf, θy, θˆd)             (11.31)
(θˆd) = argmax (θd) Ltotal (θˆf, θˆy, θd)                      (11.32)
Обновления градиента очень похожи на стандартный стохастический градиентный спуск со скоростью обучения μ, за исключением разворота с λ ∂Lid/∂θf. Слой инверсии градиента не имеет параметров, и его прямой проход является функцией идентичности, а обратный проход - это градиент от последующего слоя, умноженный на -1:
θf ← - θf - μ ∂Liy/∂θf − λ∂Lid / ∂θf                           (11.33)
θy ← - θy - ∂Liy / ∂θy                                              (11.34)
θd ← - θd - μ∂Lid/∂θd                                              (11.35)

11.1.1.8. Состязательная дискриминационная адаптация домена
Tzeng et al. предложить состязательную дискриминационную адаптацию домена (ADDA), которая использует дискриминационный подход для изучения сдвигов домена, не имеет весов, привязанных между источником и целью, и имеет потерю GAN для вычисления состязательных потерь [Tze + 17].
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Рис. 11.6: Доменно-состязательная нейронная сеть
Предположим, у нас есть исходные данные Xs и метки Ys, взятые из исходного распределения ps (x, y), и целевые данные Xt из целевого распределения pt (x, y) без меток. Цель состоит в том, чтобы изучить целевое отображение Mt и классификатор Ct, которые могут классифицировать K категорий.
В состязательных методах цель состоит в том, чтобы минимизировать расстояние распределения между исходным и целевым отображениями Ms (Xs) и Mt (Xt), чтобы модель классификации источников Cs могла использоваться непосредственно на цели, так что C = Cs = Ct. Стандартные контролируемые потери можно записать как:
min Ms,C Lclass (Xs, Ys) = −E (xs, ys) ∼ 
(Xs, Ys) ∑Kk=11[k = ys] logC (Ms (xs))                           (11.36)
Дискриминатор домена D классифицирует данные из источника или цели, а D оптимизируется с помощью LadvD:
minDLadvD (Xs, Xt, Ms, Mt) = −Exs∼Xs [logD (Ms (xs))] – 
Ext∼Xt [log (1 − D (Mt (xt)))]                                    (11.37)
Потеря состязательного отображения определяется LadvM:
minMs,MtLadvM (Xs, Xt, D) = −Exs∼Xt [logD (Mt (xt))] (11.38)
Обучение происходит поэтапно, как показано на рис. 11.7. Процесс начинается с Ladvclass над Ms и C с использованием помеченных данных Xs и Ys. Затем мы можем выполнить состязательную адаптацию, оптимизируя LadvD, LadvM.
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Рис. 11.7: Состязательная дискриминационная адаптация домена
11.1.1.9. Связанные генерирующие состязательные сети
Лю и Тузель предлагают связанную генеративно-состязательную сеть (CoGAN) для изучения совместного распределения между двумя доменами и показывают, что она очень успешна в компьютерном зрении [LQH16]. Как обсуждалось в гл. 4, сети GAN состоят из генеративной и дискриминационной моделей. Генеративная модель используется для генерации синтетических данных, которые напоминают реальные данные, в то время как дискриминационная модель используется для их различения. Формально случайный вектор z вводится в генеративную модель, которая выводит g (z), имеющую ту же поддержку, что и вход x. Дискриминативная модель выводит f (x) = 1, если оно взято из действительного x ∼ pX, и f (x) = 0, если оно получено из синтетического или сгенерированного x ∼ pG. Таким образом, GAN можно рассматривать как минимаксную игру для двух игроков, решающую задачу оптимизации:
maxg minf V (f, g) ≡ Ex∼pX [−log f (x)] + 
Ez∼pZ [−log (1− f (g (z)))                                 (11.39)
В CoGAN, как показано на рис. 11.8, есть две сети GAN для двух разных доменов.
Генеративные модели пытаются декодировать от функций более высокого уровня к функциям более низкого уровня, в отличие от дискриминационных моделей. Если x1 и x2 являются двумя входными данными, взятыми из предельного распределения первого (x1 ∼ pX1) и второго (x2 ∼ pX2), соответственно, то генеративные модели GAN1 и GAN2 отображают случайный вектор z в примеры, имеющие ту же поддержку, что и x1 и x2. Распределение g1 (z) и g2 (z) есть pG1 и pG2. Когда g1 и g2 реализованы как MLP, мы можем написать:
g1 (z) = g(m1)1 (g (m1−1)1 (··· g(2)1 (g(1)1 (z))))         (11.40) 
g2 (z) = g(m2)2 (g(m2−1)2 (··· g(2)2 (g(1)2(z))))           (11.41)
где gi1 и gi2 - слои в соответствующих ГАН со слоями m1 и m2 соответственно. Структура для первых нескольких слоев и веса идентичны, что ограничивает
θgi1 = θgi2 для i = 0,1, ... k                                   (11.42)
где k - общие слои, а θgi1 и θgi2 - параметры gi1 и gi2 соответственно. Это ограничение позволяет первым уровням, которые декодируют высокоуровневые функции, декодировать их одинаково для обоих генераторов g1 и g2.
Дискриминационные модели сопоставляют входные данные с вероятностью, оценивая вероятность того, что входные данные получены из распределения данных. Если fi1 и fi2 соответствуют уровням дискриминантных сетей для двух GAN с n1 и n2 уровнями, это можно записать как:
f1 (x1) = f(n1)1(f(n1−1)1 (··· f(2)1 (f(1)1 (x1))))                 (11.43)
f2 (x1) = f(n2)2 (f(n2−1)2 (··· f(2)2 (f(1)2 (x2))))                (11.44)
где fi1 и fi2 - слои в соответствующих f1 и f2 со слоями n1 и n2 соответственно. Дискриминативные модели работают в отличие от генеративных моделей для извлечения низкоуровневых объектов на первых слоях и высокоуровневых объектов на последних слоях. Чтобы гарантировать, что данные имеют одинаковые высокоуровневые функции, мы разделяем последние слои, используя:
θf (n1 − i)1 = θf(n2 − i)2 for i = 0,1, ... (l −1)                  (11.45)
где l - общие слои, а θfi1 и θfi2 - параметры fi1 и fi2 соответственно. Можно показать, что обучение в CoGAN соответствует минимаксной игре с ограничениями, задаваемой формулой:
maxg1,g2minf1,f2V (g1, g2, f1, f2) 
при условии θgi1 = θgi2  i = 0,1, ... k
θf (n1 − i) 1 = θf (n2 − i) 2f или i = 0,1, ... (l −1) (11.46)
где функция цены V определяется выражением:
maxg1,g2minf1,f2V (g1, g2, f1, f2) = Ex1∼pX1 [−log (f1) (x1)] + 
Ez∼pZ [−log (1− f1 (g1 (z)))] + Ex2∼ pX2 [−log (f2 (x2))] + Ez∼pZ [−log (1 − f2 (g2 (z)))                           (11.47)

Основное преимущество CoGAN заключается в том, что, отбирая выборки отдельно от предельных распределений, CoGAN может очень эффективно изучить совместное распределение из двух доменов.
11.1.1.10. Циклические состязательные сети
Циклически согласованные состязательные сети (CycleGAN), предложенные Zhu et al. были одной из самых инновационных генерирующих враждебных сетей в последнее время и получили широкое применение в различных областях [Zhu + 17]. Концепция последовательности цикла означает, что если мы переводим предложение с языка A на язык B, то перевод его с языка B на язык A должен дать аналогичное предложение.
Основная идея состоит в том, чтобы научиться переходить из исходного домена X в целевой домен Y, когда в обучающих данных нет соответствующих им примеров.
Это выполняется в два этапа: а) изучение отображения G: X - → Y, так что невозможно узнать, пришли ли данные из G (X) или Y с использованием состязательной потери; и б) изучение обратного отображения F: Y - → X и введение потери согласованности цикла так, чтобы
F (G (X)) = X и G (F (Y)) = Y (рис. 11.9).
Обучение, когда G (x) пытается сгенерировать данные, похожие на y, в то время как дискриминатор DY стремится различать G (x) и действительный y, можно выразить как:
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Рис. 11.8: Сопряженные генеративные состязательные сети
minGmaxDYLGAN (G, DY, X, Y)                           (11.48)
где
LGAN (G, DY, X, Y) = Ey∼pdata (y) [logDY (y)] + 
Ex∼pdata(x) [log (1 − DY (G (x)))]                 (11.49)

по аналогии
minFmaxDXLGAN (F, DX, Y, X)                            (11.50)
LGAN (F, DX, Y, X) = Ex∼pdata(x) [logDX (x)] + 
Ey∼pdata(y) [log (1 − DX (F (y)))]                 (11.51)

Потеря согласованности цикла заключается в переносе исходных данных x из перевода x → G (x) → F (G (x)) ≈ x для области x и y из перевода y → F (y) → G (F (y)) ≈ y, записанное как:
Lcyc (G, F) = Ex∼pdata (x) [||F (G(x)) – x||1] + 
Ey∼pdata (y) [||G (F (y)) – y||1]                      (11.52 )
Таким образом, общая цель может быть записана как:
Ltotal (G, F, DX, DY) = LGAN (G, DY, X, Y) + 
LGAN (F, DX, Y, X) + λLcyc (G, F)            (11.53)
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Рис. 11.9: Циклически генерирующие состязательные сети (CycleGAN) с последовательностью прямого цикла и последовательностью обратного цикла
CycleGAN не требует, чтобы пары данных в доменах совпадали. Он может изучить лежащие в основе отношения и помочь в переходе между доменами.
11.1.1.11. Сети разделения доменов
Сети разделения доменов Bousmalis et al. иметь частные кодировщики для изучения отдельных доменов, общие кодировщики для изучения общих представлений в разных доменах, общий декодер для эффективного обобщения с использованием потерь восстановления и классификатор, использующий общие представления для устойчивости [Bou + 16].
Исходный домен Ds имеет Ns помеченных данных Xs = xsi, ysi, а целевой домен Dt имеет Nt немаркированных данных Xt = xti. Пусть Ep(x; θp) будет функцией, которая отображает вход x в скрытое представление hp для представления, которое является частным для области.
Пусть Ec (x; θc) будет функцией, которая отображает вход x в скрытое представление hc, общее для источника и цели. Пусть D (h; θd) будет функцией декодирования, которая отображает скрытое представление h в исходную реконструкцию xˆ. Реконструкция может быть дана как xˆ = D (Ec (x) + Ep (x)). Пусть G (h; θg) - функция классификатора, которая отображает скрытое представление h в предсказания yˆ, заданные как yˆ = G (Ec (x)).
На рисунке 11.10 показан весь процесс DSN.
Общие потери можно записать как:
Ltotal (θc, θp, θd, θg) = Lclass + α Lrecon + 
β Ldifference + γ Lsimilarity                               (11.54)

где гиперпараметры α, β, γ определяют вес каждого члена потерь. Потеря классификации - это стандартная отрицательная логарифмическая вероятность, определяемая по формуле:
Lclass = − ∑Nsi = 0ySi · log (yˆsi)                               (11.55)
Потери реконструкции вычисляются с использованием масштабно-инвариантной среднеквадратичной ошибки:
Lrecon = − ∑Nsi = 0Lsi mse (xi, xˆi)                               (11.56)
Потеря разницы, как следует из названия, применяется к обоим доменам и предназначена для захвата различных аспектов входных данных для частных и общих кодировщиков. Пусть Hsc и Htc будут строками матриц, которые являются общими между исходным и целевым скрытыми слоями. Пусть Hsp и Htp будут строками матриц, которые являются частными для источника и целевых скрытых слоев. Потеря разницы определяется как:
Ldifference = ||Hsc Hsp ||2F + ||Htc Htp ||2F                     (11.57)
где || · ||F - квадрат нормы Фробениуса.
Потеря сходства между доменами, направленная на максимизацию «путаницы», достигается с помощью уровня обращения градиента и классификатора предметной области для прогнозирования предметной области. Если di ∈ 0,1 является основной истинностью областей для данных и dˆi ∈ 0,1 является прогнозируемым значением области, то состязательное обучение может быть достигнуто с помощью:
LDANNподобие = ∑Ns+Nt i = 0 {di logdˆi + 
(1 − di) log (1 − dˆi)}                                   (11.58)
Потери максимального среднего несоответствия (MMD) также можно использовать вместо DANN, описанного выше.
Сети разделения доменов явно и совместно захватывают как частные, так и совместно используемые компоненты представлений доменов, что делает их менее уязвимыми для шума, который коррелирует с совместно используемыми распределениями.
11.1.2. Теория
Мы опишем две темы, которые были изучены за последние пару лет, чтобы дать формальное отображение адаптации предметной области, которое применимо в области глубокого обучения. Одним из них является обобщение большинства сетей адаптации домена, проведенное Tzeng et al. [Tze + 17], а другой - теория оптимизации транспорта для теоретической основы адаптации предметной области [RHS17].
11.1.2.1. Адаптация домена на основе сиамских сетей
Tzeng et al. представляют обобщенную сиамскую архитектуру, которая охватывает большинство реализаций в адаптации предметной области с использованием глубокого обучения, как показано на рис. 11.11 [Tze + 17]. В архитектуре есть два потока: исходный вход помечен, а целевой вход не помечен. Обучение проводится с комбинацией потери классификации с потерей из-за несоответствия или из-за состязательности. Потеря классификации рассчитывается только с использованием помеченных исходных данных. Потеря несоответствия вычисляется на основе сдвига домена между источником и целью. Состязательная потеря пытается уловить скрытые особенности, используя состязательную цель по отношению к дискриминатору домена. Это исследование помогает представить все архитектуры, рассматриваемые как различные расширения общей архитектуры, с изменениями в том, как вычисляются потери классификации, потери несоответствия и состязательные потери.
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Рис. 11.10: Сети разделения доменов (DSN)
Эта установка может быть обобщена для отрисовки образцов с меткой источника (Xs, Ys) из распределения ps (x, y) и немаркированных целевых выборок Xt из распределения pt (x, y). Цель состоит в том, чтобы узнать из исходных примеров и классификатора Cs отображение представления Ms, а также получить целевое отображение Mt с классификатором Ct во время прогнозирования, который учится классифицировать невидимые примеры по k категориям.
Цель большинства состязательных методов - минимизировать расстояние между распределениями Ms (Xs) и Mt (Xt), что неявно означает, что в большинстве случаев исходный и целевой классификаторы могут быть одинаковыми C = Cs = Ct. Классификация источников может быть дана в общей форме оптимизации потерь как:
minMS,C Lкласс (XS, YS) = −E(xs, ys)∼(XS, YS) ∑Kk =11[k = ys] 
logC (MS (xs))                                             (11.59)

Дискриминатор домена D, который классифицирует, извлекаются ли данные из источника или цели, может быть записан как:
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Рис. 11.11: Сиамские сети для обобщения реализации адаптации домена
minDLadvD (XS, XT, MS, MT) = −Exs∼XS [logD (MS (xs))] – 
Ext∼XT [log (1 − D (MT (xt)))]                         (11.60)

С ограничениями сопоставления источника и цели, заданными ψ(MS, MT), дискриминатор D, который может различать их, может быть захвачен как враждебная цель LadvM: 
minDLadvM (XS, XT, MS, MT) minMS,MT LadvM (XS, XT, D) 
s.tψ(MS, MT)                                                   (11.61)

С помощью этой общей структуры теперь можно понять различные методы, описанные в области адаптации.
Процесс обращения градиента может быть записан в терминах оптимизации потерь дискриминатора непосредственно как LadvM = −LadvD.
При использовании GAN возникают две потери: потеря дискриминатора и потеря генератора. Потери дискриминатора LadvD остаются прежними, а потери генератора могут быть записаны как:
minDLadvM (XS, XT, D) = −Ext∼XT [logD (MT (xt))]    (11,62)
Потеря путаницы в домене может быть записана как минимизация потери кросс-энтропии, определяемой следующим образом:
minDLadvM (XS, XT, D) = - ∑d∈s,t Exd∼XD[1/2 logD (Md (xd)) + 
1/2log (1 − D (Md (xd)))                                  (11.63)
11.1.2.2. Оптимальная транспортировка
В последние несколько лет теория оптимального транспорта приобрела известность в различных областях статистики, оптимизации и машинного обучения. Оптимальный транспорт можно рассматривать как способ измерения переноса данных между двумя разными распределениями, который основан на геометрии точек данных в двух и имеет функцию затрат, связанную с транспортировкой [Mon81]. Этот транспортный механизм очень хорошо отображается на адаптацию домена, где исходный и целевой домены могут рассматриваться как два разных распределения, а оптимальный транспорт объясняет как теорию, так и оптимизацию отображения. Расстояние Вассерштайна в оптимальном транспорте, который используется для измерения расстояния между двумя распределениями, может также использоваться как цель минимизации или функция регуляризации в общей функции потерь. Оптимальный транспорт был использован, чтобы дать хорошее обобщение, привязанное к каркасам глубокой адаптации [RHS17].
11.1.3. Приложения в НЛП
Glorot et al. в самые ранние дни глубокого обучения показали, как составные автокодеры с разреженными выпрямительными блоками могут изучать представления на уровне функций, которые могут очень эффективно выполнять адаптацию предметной области при анализе тональности [GBB11c].
Нгуен и Гришман используют встраивание слов вместе с функциями кластеризации слов, чтобы показать, что адаптация домена при извлечении отношений может быть очень эффективной [NG14]. Nguyen et al. более подробно изучить использование вложений слов и ядер дерева для генерации семантического представления для извлечения отношений и улучшений по сравнению с методами, основанными на признаках [NPG15]. Нгуен и Гришман показывают, как CNN с встраиванием слов, встраиванием позиций и встраиванием типов сущностей в качестве входных данных могут изучить эффективное представление, которое дает хороший метод адаптации предметной области для обнаружения событий [NG15a]. Fu et al. показать эффективность доменной адаптации для извлечения отношений с использованием доменно-состязательных нейронных сетей (DANN) [Fu + 17].
Они используют встраивание слов, встраивание позиций, встраивание типов сущностей, встраивание фрагментов и встраивание путей зависимостей. Они используют CNN и DANN со слоем инверсии градиента, чтобы эффективно изучить извлечение отношений с помощью междоменных функций.
Чжоу и др. использовать новые глубокие нейронные сети с двойной передачей для передачи исходных примеров в цель и наоборот для достижения результатов, близких к современным в классификации тональности [Zho + 16]. Zhang et al. использовать сопоставление ключевых слов с источником и целью и использовать его в состязательном обучении для домена адаптация в классификации [ZBJ17]. Зисер и Райхарт показывают, как сводные функции (общие функции, присутствующие в исходном и целевом) вместе с автоэнкодерами могут изучать представление, которое очень эффективно при адаптации предметной области для классификации тональности [ZR17]. Зайзер и Райхарт расширяют исследование до основанного на сводных данных языковая модель с учетом структуры, которая может использоваться для различных задач классификации и последовательностей для улучшения результатов [ZR18]. Ю и Зианг комбинируют идеи структурного заочного обучения, функций на основе вращений и обучения с помощью совместных задач для эффективной адаптации предметной области при классификации настроений [YJ16].
11.1.4. Приложения в распознавании речи
Falavigna et al. показать, как глубокие нейронные сети и автоматическая оценка качества (QE) могут быть использованы для адаптации домена [Fal + 17]. Они используют двухэтапный процесс, в котором первые вручную помеченные транскрипты используются для оценки WER по данным для разного качества. Затем выполняется адаптация невидимых данных в соответствии с оценками WER компонентом QE, чтобы показать значительные улучшения в производительности.
Hosseini-Asl et al. расширить концепцию CycleGAN, чтобы иметь несколько дискриминаторов (MD-CycleGAN) для неконтролируемой непараллельной адаптации речевой области [Hos + 18]. Они используют CycleGAN с несколькими дискриминаторами для изучения частотных вариаций спектрограмм между доменами. Они используют различную гендерную речь ASR в обучении и тестировании, чтобы оценить аспект адаптации framework предметной области и сообщать о хорошей производительности с помощью архитектуры MD CycleGAN на невидимых доменах.
Адаптация к разным говорящим с разными акцентами - одна из открытых исследовательских проблем в области распознавания речи. Wang et al. в своей работе проводят подробный анализ, рассматривая это как проблему адаптации предметной области с различными фреймворками, чтобы дать важные выводы [Wan + 18a]. Они используют три разных метода адаптации динамика, такие как линейное преобразование (LIN), изучение вклада скрытых единиц (LHUC) и расхождение Кульбака – Лейблера (KLD) на акустической модели DNN на основе i-вектора. Они показывают, что на основе акцентов с использованием одного из методов производительность ASR может быть значительно улучшена не только для средних и тяжелых акцентов, но и для легкого акцента.
Производительность ASR может быть значительно улучшена не только для средних и сильных акцентов, но и для динамиков с небольшим акцентом. Sun et al. использовать предметно-состязательный тренинг для решения акцентированной речи в ASR [Sun + 18a]. Использование состязательного обучения предметной области в цели обучении из немаркированного целевого домена с разными акцентами для разделения исходного и целевого домена при использовании помеченного исходного домена для классификации, они показывают значительное снижение количества ошибок для невидимых акцентов.
К повышению качества ASR при наличии шума за счет повышения устойчивости моделей также можно подойти из представления адаптации домена на основе того, как шум в целевом домене или невидимых данных отличается от исходных доменов. Сердюк и др. использовать GAN для адаптации домена в невидимых зашумленных целевых наборах данных [Ser + 16]. Модель имеет кодировщик, декодер и распознаватель со скрытым представлением между ними, которое используется для выполнения двойных задач по улучшению распознавания и минимизации различения доменов. Они показывают, что их метод лучше подходит для обобщения, когда в целевой области больше категорий шума, чем в исходных обучающих данных. Sun et al. использовать состязательное увеличение данных с помощью метода быстрого градиента знака (FSGM), чтобы показать значительные улучшения в надежности акустических моделей [Sun + 18b]. Meng et al. использовать сети разделения доменов (DSN) для адаптации доменов между источником и целями для обеспечения устойчивости к целевым данным с разными уровнями шума [Men + 17]. Общие компоненты изучают неизменность домена между исходным и целевым доменами. Частные компоненты ортогональны разделяемым и учатся увеличивать доменную инвариантность. Они показывают значительное снижение WER по сравнению с базовой линией с помощью неадаптированной акустической модели с их подходом.
11.2. Обучение с нулевым, однократным и малым выстрелом
Крайности проблемы адаптации предметной области или трансферного обучения возникают, когда существует ограниченное количество обучающих примеров, соответствующих тесту. Лучшим примером является проблема распознавания лиц из компьютерного зрения, где есть ровно 1 обучающий пример для каждого человека, и когда кто-то появляется, необходимо сопоставить существующий или классифицировать его как новый невидимый. Основываясь на ряде обучающих примеров, соответствующих невидимому примеру, который мы получаем во время прогнозирования, есть разные варианты, такие как обучение с нулевым выстрелом, обучение с одного кадра и обучение с несколькими выстрелами. В следующих разделах мы обсудим каждый из них и методы, которые были популярны для их решения.
11.2.1. Обучение с нулевым выстрелом
Обучение с нулевым выстрелом - это форма трансферного обучения, при которой у нас нет абсолютно никаких обучающих данных для классов, которые мы увидим в тестовом наборе, или, когда модель используется для прогнозов. Идея состоит в том, чтобы изучить сопоставление классов с вектором таким образом, чтобы невидимый класс в будущем мог быть сопоставлен с тем же пространством, а «близость» к существующим классам могла использоваться для предоставления некоторой информации о невидимом класс. Примером из домена NLU может быть ситуация, когда данные о компьютерах доступны, а базы знаний (KB) существуют вопрос о том, что для получения информации о них и «какова стоимость конкретной детали для такой функции, как дисплей», может быть сформирован как запрос к базе знаний, имеющей базу данных компонентов, подкомпонентов, функций и частей. Изучение этого сопоставления можно использовать для переноса его в совершенно другой домен. Например, это можно использовать в автомобилестроении по аналогичным запросам, если обычно используется стоимость деталей для выполнения определенных функций.
11.2.1.1. Методы
Мы проиллюстрируем общий метод и варианты, которые оказались успешными в задачах компьютерного зрения и понимания / распознавания речи / языка [XSA17].
Подход заключается в измерении сходства между исходным и целевым доменами. В компьютерном зрении, например, одним из способов является отображение пространства меток в векторное пространство на основе дополнительной информации, такой как атрибуты, фиксирующие изображение. Атрибуты могут быть мета-уровнями или характеристиками уровня изображения, такими как «наличие определенного цвета», «размер объекта» и другие. Векторное представление может быть одним из горячих векторов этих атрибуты. Объекты исходных данных встраиваются в пространство исходных объектов. Следующим шагом является поиск совместимости между пространством исходных функций, как показано на рис. 11.12, с помощью функции совместимости.
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Рис. 11.12: Обучение с нулевым выстрелом
Формально исходный набор данных S = {(xn, yn), n = 1, ... N} с входными данными и метками xn ∈ X, yn ∈ Y соответственно. Цель состоит в том, чтобы изучить функцию f (x), которая минимизирует потери при прогнозировании метки y и может быть записана с использованием минимизации эмпирического риска в форме:
1/N∑Nn = 1L (yn, f (xn))                                           (11.64)
где L - функция измерения потерь. Для классификации это может быть 0 при сопоставлении и 1 при отсутствии сопоставления. Пусть θ - функция встраивания источника, которая преобразует входные данные в свое пространство признаков, то есть θ: X → X˜. Аналогично, пусть ϕ: Y → Y˜ - функция встраивания меток, которая преобразует метки в пространство с помощью атрибутов.
Функция совместимости F: X × Y → и функция f определены в терминах параметров модели w для F, то есть того, насколько пара (x, y) совместима с заданным параметром w:
f (x; w) = argmaxy∈YF (x, y; w)                            (11.65)
Существуют различные формы функций совместимости, которые упомянуты ниже:
1. Парное ранжирование: популярный метод, который использует выпуклую цель, попарное ранжирование и обновления SGD, определяется следующим образом:
∑y∈Ytrain [Δ (yn, y) + F (xn, y; W) −F (xn, yn; W)]+ (11.66)
где Δ - потери 0/1, а F - функция линейной совместимости.
2. Взвешенное попарное ранжирование: расширение вышеперечисленного, которое добавляет веса следующим образом:
∑y∈Ytrain lk[Δ (yn, y) + F (xn, y; W) −F (xn, yn; W)]+ (11.67)
где lk = ∑ki =1 αi, αi = 1/i, k - количество рангов.
3. Структурированное совместное встраивание (SJE): Другой попарный рейтинг, но для сценария с несколькими классами, где для поиска наиболее нарушающего класса используется функция max, определяется следующим образом:
max∑y∈Ytrain Δ (yn, y) + F (xn, y; W) −F (xn, yn; W)]+ (11.68)
4. Смущающе простое обучение с нулевым выстрелом: расширение вышеупомянутого метода SJE, где добавлен термин регуляризации:
γ ||Wφ (y)||2 + λ ||θ (x)TW||2 + β ||W||2                        (11.69)
где γ, λ, β - параметры регуляризации.
5. Семантический автоэнкодер: Другой метод, использующий линейный автоэнкодер для проецирования из θ (x) в ϕ (y) пространство:
minW ||θ (x) −WTϕ (y)||2 + λ||Wθ (x) −ϕ (y)||2         (11.70)
6. Скрытые вложения: Чтобы преодолеть ограничения линейных весов W, в функцию совместимости вносится кусочно-линейная модификация для достижения нелинейности, определяемой следующим образом:
F (x, y; W) = θ (x)TWiϕ (y)                                     (11.71)
где Wi - различные изученные линейные веса.
7. Межмодельный перенос. Другой нелинейный метод - выполнение нелинейного преобразования с использованием двухуровневых нейронных сетей с весами W1 и W2 и целевой функцией:
∑y∈Ytrain ∑x∈X ||ϕ (y) −W1tanh (W2θ (x)))               (11.72)
8. Прямое предсказание атрибутов: в другом методе используются атрибуты, связанные с классом, который необходимо изучить напрямую, задаваемые:
f (x) = argmaxc∏Mm=1p (acm | x) p (acm)                  (11.73)
где M - общее количество атрибутов, acm - это m-й атрибут класса c, а p(acm | x) - это вероятность атрибута, связанная с заданными данными x.
11.2.2. Однократное обучение
Общая проблема при однократном обучении состоит в том, чтобы изучить набор данных, в котором есть один пример для класса. Такая же общая форма используется для функции подобия в представлении между обучающими примерами, так что во время прогнозирования функция подобия используется для поиска ближайшего доступного примера в обучающих данных.
11.2.2.1. Методы
Сиамские сетевые архитектуры с вариациями, как правило, являются обычным способом изучения сходства в этих структурах. Параметры сети изучаются путем попарного обучения из набора обучающих данных, как показано на рис. 11.13. Один из вариантов состоит в том, что вместо полностью связанных слоев, идущих на слой softmax, для сходства могут использоваться функции или кодирование входных данных; полученные в результате сети называются совпадающими сетями. Один из способов изучения параметров сети - это во время обучения минимизировать разницу, когда входные данные схожи, и максимизировать, когда они не похожи, в то время как во время прогнозирования использовать изученное представление для вычисления сходства с существующими обучающими выборками. Если xi и xj - это два примера из обучающих данных, функция подобия может быть разницей между двумя прогнозами в сиамских сетях, заданными следующим образом:
d (xi, xj) = ||f (xi) - f (xj)||22                                     (11.74)
Другой способ узнать параметры - использовать функцию потерь триплетов Schroff et al. [FSP15]. Идея состоит в том, чтобы выбрать данные привязки xA, для которых положительный xP и отрицательный образец xN используются для изучения параметров сети, чтобы разница между данными привязки и положительными данными была максимальной, а разница между данными привязки и отрицательной сводится к минимуму:
L (xA, xP, xN) = max (||f(xA) - f(xP)||22 – 
||f(xA) - f(xN)||22 + α, 0)                                 (11.75)
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Рис. 11.13: Однократное обучение
В формуле. 11.75 параметр α аналогичен запасу в SVM. Обучающие данные используются для генерации триплетов, а метод стохастического градиента может использоваться для изучения параметров с этой функцией потерь.
11.2.3. Быстрое обучение
Быстрое обучение - относительно более легкая форма обучения по сравнению с двумя предыдущими. В общем, большинство методов, упомянутых в однократном обучении, можно использовать и для обучения с несколькими выстрелами, но мы проиллюстрируем несколько дополнительных приемов, которые оказались успешными.
11.2.3.1. Методы
Методы глубокого обучения для быстрого обучения можно описать как подходы на основе данных или подходы на основе моделей. В подходе, основанном на данных, некоторая форма увеличения обучающих данных в различных формах - это общий процесс, используемый для увеличения количества похожих выборок.
Напротив, подход, основанный на модели или параметрах, обеспечивает регуляризацию в той или иной форме, чтобы предотвратить переобучение модели из ограниченных обучающих выборок. Донхён и др. использовали интересную идею корреляции активаций из вводимых данных для формирования «групп» похожих нейронов или параметров на слой в исходных данных [Yoo + 18]. Гиперпараметр «количество групп» для каждого слоя выбирается с использованием алгоритма k - кластеризации, где k дополнительно изучается с помощью методов усиления.
После обучения на исходном наборе данных эти группы нейронов настраиваются на целевой домен с помощью группового обратного распространения. По мере увеличения количества параметров с небольшими обучающими данными для каждой категории алгоритмы оптимизации, такие как SGD, неэффективны. Mengye et al. предложили метод метаобучения для решения этой проблемы в два этапа: (а) модель учителя учится на большом количестве данных, чтобы захватить пространство параметров, и (b) затем направить фактического ученика или классификатора к обучению с использованием многообразия параметров, что дает отличные результаты [Ren + 18].
11.2.4. Теория
Palatucci et al. представить классификатор отображения семантического выходного кода в качестве теоретической основы и формализации для обучения с нулевым выстрелом [Pal + 09]. Сопоставление классификатора помогает понять, как сопоставляются база знаний и семантические особенности выходных данных, и как может происходить обучение, даже если новые классы отсутствуют из данных обучения с использованием структуры PAC.
Fei-Fei Li et al. предложили байесовскую основу для теоретической основы однократного обучения в области идентификации объектов [FFFP06]. Моделируя предварительные знания данных как функцию плотности вероятности для параметров с этими моделями, апостериорными являются категории объектов, байесовская структура показывает, как модели несут информацию даже с очень небольшим количеством примеров в обучении для правильного определения категорий.
Triantafillou et al. предложили структуру поиска информации и реализацию для моделирования обучения за несколько шагов [TZU17]. В этой статье предлагается изучить метрику подобия для отображения объектов в пространстве, где они группируются на основе их отношения подобия. Цель обучения оптимизирует относительный порядок точек данных в каждом обучающем пакете, чтобы усилить важность в режиме с низким объемом данных.
11.2.5. Приложения в НЛП и распознавании речи
Большинство применений обучения с нулевым, однократным и малым выстрелом находилось в компьютерном зрении. Лишь недавно появились приложения в НЛП и речи.
Pushp и Srivastav используют беспроблемное обучение при классификации для категоризации текста [PS17]. Исходный набор данных - это заголовки новостей, полученные из Интернета, а категории - это поисковая система. Целевыми данными тестирования являются новости UCI и набор данных категоризации твитов. Они используют разные нейронные архитектуры в зависимости от того, как и что подавать в сети LSTM. Затем обученная модель применяется к набору данных, который ранее не видел взаимосвязей (новости и твиты UCI), чтобы получить очень впечатляющие результаты, демонстрирующие эффективность методов обучения с нулевым выстрелом.
Леви и др. использовали обучение с нулевым выстрелом при извлечении отношений, обучаясь отвечать на вопросы из корпуса [LS17]. Йогатама и др. попытались изучить РНС как генеративные модели и эмпирически показать перспективность генеративного обучения в условиях нулевого обучения [Yog + 17]. Отношения изучаются, задавая вопросы и имея предложения в ответах, которые сопоставляются с сущностью, где отношения упоминаются из заполняющих слотов наборов данных, таких как WikiReading. Они показывают, что даже в отношении невидимых отношений обучение с нулевым выстрелом является достаточно многообещающим в качестве методологии. Mitchell et al. использовали беспроигрышное обучение с использованием пояснений к ярлыкам или категориям, чтобы изучить пространство встраивания с использованием ограничений и показать хорошие результаты по категоризации электронной почты [MSL18].
Даган и др. предложили структуру обучения с нулевым выстрелом для проблемы извлечения событий с использованием онтологий событий и небольших, вручную аннотированных помеченных наборов данных [Dag + 18]. Они демонстрируют переносимость даже на невидимые типы и, кроме того, сообщают о результатах, близких к современным.
Ян и др. решили сложную проблему классификации коротких текстов, используя обучение за несколько шагов [YZC18]. Они используют сиамские CNN для изучения кодировки, которая различает сложные и неформальные предложения. Различные структуры и темы изучаются с использованием метода обучения по принципу «несколько выстрелов», и показано, что они обобщают и обладают большей точностью, чем многие традиционные методы и методы глубокого обучения.
Ma et al. предложили нейронную архитектуру для обучения по принципу «несколько кадров» и «без выстрела» при детальном типе именованных сущностей, т. е. обнаружении не только сущности из предложения, но и ее типа (например, «Джон разговаривает по телефону») не только идентифицирует «Джона» как сущность, но также может декодировать, что «Джон» является говорящим [MCG16]). Они используют прототипную и иерархическую информацию, чтобы изучить встраивание меток и значительно повысить производительность классификации. В своей работе Яздани и Хендерсон используют обучение с нулевым выстрелом для понимания разговорного языка, где они назначают действиям ярлыков с атрибутами и значениями из результатов произнесения диалогов ASR [YH15]. Они создают семантическое пространство между словами и ярлыками, так что оно может формировать слой представления, который очень эффективно предсказывает невидимые слова и ярлыки.
Рохас-Бараона и др. показали успех глубокого обучения и обучения с нулевым выстрелом в семантическом декодировании речевых диалоговых систем. Они используют глубокое обучение для совместного изучения функций из известных и неизвестных категорий [Roj + 18]. Затем они используют обучение без учителя для настройки весов, дополнительно используя минимизацию риска для достижения обучения с нулевым выстрелом при тестировании на невидимых данных с парами слотов, неизвестными в обучающем наборе. Керен и др. использовать однократное обучение с сиамскими сетями для вычисления сходства между отдельными примерами из исходных данных и невидимыми примерами из целевых данных в задаче обнаружения разговорного термина в области звука [Ker + 18].
11.3. Пример использования
Мы рассмотрим подробный пример, чтобы изучить и понять различные вещи, обсуждаемые в этой главе, с практической точки зрения. Мы выбрали набор данных обзора продуктов Amazon, опубликованный в исследовании Blitzer et al. [BDP07] для задачи классификации настроений. В наборе данных есть обзоры различных продуктовых областей, таких как книги, DVD, кухня и электроника. Во всех доменах есть 2000 помеченных примеров с двоичными метками (положительными и отрицательными), основанными на обзорах. В области кухни и электроники также есть большое количество немаркированных примеров. В наших экспериментах мы не использовали немаркированные примеры, но рассматривали многие помеченные как немаркированные, когда это необходимо.
Мы выбрали два разных случая: (1) исходный домен - это кухня, а целевой домен - электроника, и (2) исходный домен - это книги, а целевой домен - это кухня для наших экспериментов. Мы разделили все наборы данных на обучение и тестирование с 1600 и 400 примерами соответственно. Данные проверки выбираются из набора обучающих данных либо в процентах, либо в виде стратифицированной выборки. Хотя цель не в том, чтобы воспроизвести статьи или настроить каждый метод для получения наилучших результатов, мы выполнили некоторую настройку параметров и сохранили большинство параметров стандартными или постоянными, чтобы увидеть относительное влияние.
11.3.1. Программные инструменты и библиотеки
Мы опишем основные инструменты и библиотеки с открытым исходным кодом, которые мы использовали ниже для нашего тематического исследования. Есть несколько пакетов с открытым исходным кодом для определенных алгоритмов, которые мы использовали, адаптировали или расширили, которые упоминаются в самом блокноте:
· Керас (www.keras.io)
· TensorFlow (https://www.tensorflow.org/)
· Панды (https://pandas.pydata.org/)
· scikit-learn (http://scikit-learn.org/)
· Matplotlib (https://matplotlib.org/)

11.3.2. Исследовательский анализ данных
Подобно другим тематическим исследованиям, мы проведем базовый EDA, чтобы понять данные и некоторые их характеристики. Графики, показанные на рис. 11.14a, b, показывают гистограммы распределения слов по всему корпусу источника и цели для настроений. Это ясно показывает, что переход от домашней кухни к электронике может не так сильно отличаться от перехода от книг к кухонным обзорам.
Графики, показанные на рис. 11.15a – c, иллюстрируют облако слов для положительных данных в обзорах книг, кухонь и электроники. Просто визуально исследуя некоторые часто встречающиеся слова, сходство между облаком слов кухня – электроника, а также различия между книгами – кухней становится очевидным. Графики, показанные на рис. 11.16a – c, изображающие облако слов для данных о негативных настроениях в обзорах книг, кухонь и электроники, также демонстрируют те же характеристики.
11.3.3. Эксперименты по адаптации домена
Далее мы подробно опишем все эксперименты, которые мы провели с методами трансферного обучения в форме процесса обучения, модели, алгоритмов и изменений. Опять же, цель состояла не в том, чтобы получить оптимально настроенные модели для каждой, а в том, чтобы на практике понять, как каждый метод с его предубеждениями и процессами работает с некоторыми из этих сложных реальных задач.
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Рис. 11.14: Сравнение распределения слов в квартилях 25, 50 и 75%. (а) Сравнение книг и кухни. (б) Сравнение кухни и электроники
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Рис. 11.15: Облако слов для положительных отзывов из (а) книг, (б) кухни и (в) данных по электронике соответственно.
[image: ]
Рис. 11.16: Облако слов для негативных эмоций из (а) книг, (б) кухни и (в) данных по электронике, соответственно.
Мы проводим эксперименты как для книг - кухни, так и для кухни - электроники в качестве наших исходных и целевых областей. Мы используем точность классификации в качестве метрики, чтобы увидеть производительность, поскольку тестовые данные имели равное количество положительных и отрицательных настроений.
11.3.3.1. Предварительная обработка
Мы выполняем базовую предварительную обработку необработанных данных для выполнения задач классификации тональности. Данные анализируются из документов на основе XML, токенизируются в слова с удалением основных стоп-слов и некоторым базовым заполнением последовательностей, чтобы обеспечить представление постоянной максимальной длины для каждого. Мы создаем словарь слов, находя все слова из источника и цели, запечатанные с максимальным размером 15000 для большинства экспериментов. Для некоторых векторно-пространственных моделей мы используем представление «мешок слов» с n-граммами размера 2 и максимальными характеристиками размера 10000.
11.3.3.2. Эксперименты
Мы будем использовать модель CNN Кима, показанную на рис. 11.17, в качестве модели классификатора в большинстве экспериментов. Мы использовали стандартные вложения GloVe со 100 измерениями, которые были обучены на 6 миллиардах слов. Ниже мы перечислим названия экспериментов и их цель:
1. Обучить источник + тестовая цель: цель состоит в том, чтобы понять потерю передачи обучения, которая происходит, когда вы тренируетесь на исходных данных и тестируете только на целевых данных из-за изменения домена. Это, как мы уже обсуждали, может происходить постепенно с течением времени или из-за совершенно другой среды, в которой развертывается модель.
Это дает базовый анализ наихудшего случая для наших экспериментов.
2. Обучающая цель + тестовая цель: этот эксперимент дает нам лучший анализ случая для модели, которая не видела исходных данных, но полностью обучена на целевых обучающих данных и спрогнозирована на основе целевых тестовых данных.
3. Предварительно обученные вложения Источник + цель обучения: мы пытаемся понять влияние неконтролируемых предварительно обученных встраиваний на процесс обучения. Вложенный слой заморожен и не может быть обучен в этом эксперименте. Мы обучаем модель в целевом домене с помощью неконтролируемых встраиваний и тестируем на целевом наборе тестов.
4. Предварительно обученные вложения: источник + обучающая цель + точная настройка цели: мы обучаем модель в целевом домене с помощью неконтролируемых встраиваний, но точно настраиваем слой встраивания с данными целевого поезда.
5. Предварительно обученные вложения + обучающий источник + точная настройка источника и цели: это может быть лучшим случаем предварительного обучения и тонкой настройки, когда вы получаете преимущество обучения вложениям без учителя, обучения на источнике, точной настройки на цели и, таким образом, у вас есть больше примеров для изучения полезного представления.
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Рис. 11.17: Модель Кима CNN
6. Составные автоэнкодеры и DNN: мы используем DNN с составными автокодировщиками для неконтролируемого обучения представлению скрытых функций. Обучите модель в исходном домене без учителя. Настройте модель с новыми классификационными слоями на целевых обучающих данных и протестируйте на целевых данных.
7. Составные автоэнкодеры и CNN. Цель состоит в том, чтобы понять влияние латентного представления, полученного из невидимых исходных данных, на целевой домен с использованием CNN для автоэнкодеров, как показано на рис. 11.18a, b.
Пример кода, показывающий, как устроен автокодировщик:
1 input layer = Input ( shape=(300, 300) )
2 # encoding layers to form the bottleneck
3 encoded h1 = Dense (128 , activation= ’tanh ’ )( input i =
layer )
4 encoded h2 = Dense (64 , activation= ’tanh ’ ) ( encoded h1 )
5 encoded h3 = Dense (32 , activation= ’tanh ’ ) ( encoded h2 )
6 encoded h4 = Dense (16 , activation= ’tanh ’ ) ( encoded h3 )
7 encoded h5 = Dense (8 , activation= ’tanh ’ ) ( encoded h4 )
8 # latent or coding layer
9 latent = Dense (2 , activation= ’tanh ’ ) ( encoded h5 )
10 # decoding layers
11 decoder h1 = Dense (8 , activation= ’tanh ’ )( latent )
12 decoder h2 = Dense (16 , activation= ’tanh ’ ) ( decoder h1 )
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Рис. 11.18: Обучение без учителя из источника с использованием (а) DNN и (б) автоматических кодировщиков CNN и дальнейшее обучение / тестирование на целевом уровне с классификационным слоем в Керасе
13 decoder h3 = Dense (32 , activation= ’tanh ’ ) ( decoder h2 )
14 decoder h4 = Dense (64 , activation= ’tanh ’ ) ( decoder h3 )
15 decoder h5 = Dense (128 , activation= ’tanh ’ ) ( decoder h4 )
16 # output layer
17 output layer = Dense (300 , activation= ’tanh ’ ) ( decoder h5 )
18 # autoencoder using deep neural networks
19 autoencoder = Model ( input layer , output layer )
20 autoencoder . summary ()
21 autoencoder . compile ( ’adadelta ’ , ’mse ’ )
22

Использование автоэнкодера со слоями кодирования для классификации:
1 # create a sequential model
2 classification model = Sequential ()
3 # add all the encoding layers from autoencoder
4 classification model . add ( autoencoder . layers [0])
5 classification model . add ( autoencoder . layers [1])
6 classification model . add ( autoencoder . layers [2])
7 classification model . add ( autoencoder . layers [3])
8 classification model . add ( autoencoder . layers [4])
9 classification model . add ( autoencoder . layers [5])
10 # flatten the output
11 classification model . add ( Flatten () )
12 # classification layer
13 classification model . add ( Dense (2 , activation= ’softmax ’ ) )
14 classification model . compile ( optimizer= ’rmsprop ’ ,
15 loss= ’
categorical crossentropy ’ ,
16 metrics =[ ’accuracy ’ ] )
17

8. Маргинальные составные автокодеры: цель этого эксперимента - понять влияние архитектуры mSDA на адаптацию домена [Che + 12]. Сначала мы изучаем совместное представление, используя исходные и целевые данные. Затем мы используем последний слой в качестве векторного слоя из mSDA, объединенного с входными слоями, для обучения SVM на основе помеченных исходных данных и прогнозирования на немаркированных целевых тестовых данных.
9. Статистический метод второго порядка (Deep CORAL, CMD и MMD): цель состоит в том, чтобы увидеть, не помечены ли целевые данные, может ли метод второго порядка, основанный на статистике, который может учиться у источника и цели, быть полезным для прогнозирования цели при сдвиге домена.
10. Соревновательная нейронная сеть домена (DANN): цель состоит в том, чтобы увидеть, не помечены ли целевые данные, может ли состязательный метод, который может учиться у источника и цели, быть полезным для прогнозирования цели при сдвиге домена (таблица 11.1).

11.3.3.3. Результаты и анализ
Таблица 11.1: Эксперименты по адаптации домена на двух разных наборах данных для анализа влияния сдвига домена источник-целевой
	Эксперимент
	Источник (книги) и цель (кухня) точность теста
	Источник (кухня) и цель (электроника) точность теста

	Источник поезда + тестовая цель
	69,0
	78,00

	Тренировочная цель + тестовая цель
	84,25
	82,5

	Предварительно обученный источник вложений + цель теста
	81,5
	80,25

	Предварительно обученный источник встраивания + обучающая цель + точная настройка цели
	85,0
	84,5

	Предварительно обученные вложения + обучающий исходный код + точная настройка исходного кода и цели
	85,75
	86,75

	Составные автокодеры и DNN
	67,75
	63,75

	Составные автокодеры и CNN
	78,25
	79,25

	Маргинальные составные автокодеры
	48,0
	69,75

	КОРАЛЛ
	63,25
	69,25

	CMD
	63,25
	69,25

	ММД
	63,25
	69,25

	ДАНН
	75.00
	80.0



Некоторые наблюдения и анализ результатов приведены ниже:
1. Книги на кухню имеют более высокие потери при передаче домена, с точностью до поезда (78,25) и точностью тестирования (69,00) это 9,25, по сравнению с кухней на электронику, с точностью поезда (83,75) и точностью тестирования (78,00) это 5,75. Облако слов и распределение данных подтверждают, что обзоры, написанные для книг, сильно отличаются по сравнению с кухней и электроникой.
2. Использование предварительно обученных внедрений оказывает влияние, и постепенное улучшение, наблюдаемое при переходе от просто замороженных внедрений к вложениям, обученным на исходном и целевом уровнях, оправдывает переносное обучение.
3. Один из лучших результатов наблюдается как для книг - кухни, так и для кухонной электроники, когда используются предварительно обученные вложения, прошедшие сквозное обучение сначала на источнике, а затем на целевом объекте. Таким образом, преимущество обучения без учителя и точной настройки для адаптации к сдвигу предметной области очень очевидно.
4. Составные автокодеры с CNN показывают лучшие результаты, чем с обычными DNN, доказывая эффективность автокодировщиков в улавливании скрытых функций и многоуровневых CNN в улавливании сигналов для классификации.
5. Большинство статистических методов, таких как CORAL, CMD и MMD, не показывают хороших результатов.
6. Состязательные методы, такие как DANN, показывают многообещающие перспективы только с мелкими сетями.

11.3.4. Упражнения для читателей и практиков
Вот некоторые другие интересные задачи, которые читатели и практики могут решить самостоятельно:
1. Какое влияние окажет объединение исходных и целевых обучающих данных вместе и тестирования на невидимый целевой тест?
2. Какое влияние окажет использование помеченных и немаркированных данных из источника и целевого объекта для изучения встраивания, а затем с помощью различных методов? Дают ли вложения, основанные на сантиментах, лучшие результаты, чем обычные вложения?
3. Какое влияние окажут различные техники внедрения, изученные в гл. 5 по экспериментам?
4. Каким будет влияние различных структур глубокого обучения на классификацию, о которых мы узнали в гл. 6 по экспериментам?
5. Что мы увидим с другими методами адаптации домена, такими как CycleGAN или CoGAN?
6. Каковы будут потери при передаче и улучшения на другом источнике-целевом, таком как DVD-кухня?
7. Какие из этих методов можно использовать для задач обучения с передачей распознавания речи?
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